Search This Blog

Thursday, July 22, 2010

STEP

Now we're talking.

Physorg.com: Solar-powered process could decrease carbon dioxide to pre-industrial levels in 10 years
The new process, called Solar Thermal Electrochemical Photo (STEP) carbon capture, was recently suggested theoretically by a team of scientists from George Washington University and Howard University, both in Washington, DC. Now, in a paper just published in The Journal of Physical Chemistry Letters, the scientists have experimentally demonstrated the STEP process for the first time.


“The significance of the study is twofold,” Stuart Licht, a chemistry professor at George Washington University, told PhysOrg.com. “Carbon dioxide, a non-reactive and normally difficult-to-remove compound, can be easily captured with solar energy using our new low-energy, lithium carbonate electrolysis STEP process, and with scale-up, sufficient resources exist for STEP to decrease carbon dioxide levels in the atmosphere to pre-industrial levels within 10 years.”


As the scientists explain, the process uses visible sunlight to power an electrolysis cell for splitting carbon dioxide, and also uses solar thermal energy to heat the cell in order to decrease the energy required for this conversion process. The electrolysis cell splits carbon dioxide into either solid carbon (when the reaction occurs at temperatures between 750°C and 850°C) or carbon monoxide (when the reaction occurs at temperatures above 950°C). These kinds of temperatures are much higher than those typically used for carbon-splitting electrolysis reactions (e.g., 25°C), but the advantage of reactions at higher temperatures is that they require less energy to power the reaction than at lower temperatures.

No comments: